PERBANDINGAN KINERJA K-NEAREST NEIGHBORS DAN CONVOLUTIONAL NEURAL NETWORK UNTUK KLASIFIKASI CITRA KONDISI PERMUKAAN JALAN
##plugins.themes.academic_pro.article.main##
Abstract
Improving road infrastructure quality is an important aspect of transportation development and road user safety. Automatically assessing road surface conditions can accelerate maintenance and repair efforts. This study compares two classification methods, K-Nearest Neighbors (KNN) and Convolutional Neural Network (CNN), to evaluate road surface conditions based on digital images. Texture features are extracted using the Gray Level Co-occurrence Matrix (GLCM), including Contrast, Homogeneity, Energy, and others, to enhance the classification accuracy in KNN, while feature extraction and classification in CNN are performed automatically. The dataset used in this research consists of 1500 images of road surfaces with three different conditions: smooth, cracked, and potholes. Each condition contains 500 images with a resolution of 300x300 pixels. The results show that the KNN algorithm achieves an accuracy of 57.2%, while CNN demonstrates the best performance with an accuracy of 93.8%. for 80% training data and 20% testing data
##plugins.themes.academic_pro.article.details##

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
[2] R. L. Gaho, I. T. Ali and E. Prakasa, “Klasifikasi Kualitas Permukaan Jalan Raya Menggunakan Metode CNN Berbasis Arsitektur Xception,” Jurnal Inovtek Polbeng Seri Informatika, vol. 9, no. 1, pp. 354-365, 2024.
[3] A. Wibowo and E. Setiyadi, “Klasifikasi dan Deteksi Keretakan Pada Trotoar Menggunakan Metode Convolutional Neural Network,” Jurnal Teknik Sipil Cendekia, vol. 4, no. 1, pp. 411-425, 2023.
[4] I. Maylani, V. W. Ambarwati, B. Wasykuru, A. Alqaroni and F. T. B. K. Wati, “Grey Level Co-Occurrence Matrix (GLCM) & Hybrid Klasifikasi untuk Mendeteksi Kerusakan Jalan Aspal,” in Seminar Nasional Teknik Elektro,Sistem Informasi, dan Teknik Informatika, Surabaya, 2023.
[5] S. Ulya, M. A. Soeleman and F. Budiman, “Optimasi Parameter K Pada Algoritma K-NN Untuk Klasifikasi Prioritas Bantuan Pembangunan Desa,” Techno.COM, vol. 20, no. 1, pp. 83-96, 2021.
[6] M. H. Fadlun, M. Martanto and U. Hayati, “Klasifikasi Tumor Otak menggunakan Convolutional Neural Network dan Transfer Learning,” Jurnal Informatika dan Rekayasa Perangkat Lunak, vol. 6, no. 1, p. 289–295, 2024.
[7] M. R. W. Budiarto and F. Utaminingrum, “Sistem Klasifikasi Permukaan Jalan dan Penghindaran Jalan Berlubang pada Kursi Roda Pintar dengan Metode MobileNetV3-Small,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 7, no. 5, p. 2249–2254, 2023.
[8] M. Muchtar, M. N. Sutoyo, A. Paliling, S. Sunyanti and J. N. Iin, “Penerapan Analisis Berbasis Fraktal dalam Klasifikasi Citra Retakan pada Permukaan Jembatan Beton,” STRING (Satuan Tulisan Riset dan Inovasi Teknologi), vol. 9, no. 1, p. 21–29, 2024.
[9] T. Handhayani, A. H. Pawening and J. Hendryli, “Leboh 2: An Android Application for Solid Waste,” IAENG International Journal of Computer Science, vol. 50, no. 4, pp. 1-9, 2023.
[10] T. Handhayani, A. H. Pawening and J. Hendryli, “An Automatic Recognition System for Digital Collections of Indonesian Traditional Houses Using Convolutional Neural Networks for Cultural Heritage Preservation,” International Journal of Computational Intelligence and Applications, vol. 22, no. 2, pp. 1-13, 2023.
[11] E. Jochsen and T. Handhayani, “Pengenalan Bangunan Bersejarah Pura Dengan Arsitektur InceptionV3 dan Xception,” Jurnal Eksplora Informatika , vol. 14, no. 1, pp. 1-11, 2024.
[12] B. Karnadi and T. Handhayani, “Klasifikasi Jenis Buah dengan Menggunakan Metode MobileNetv2 dan Inceptionv3,” Jurnal Eksplora Informatika, vol. 14, no. 2, pp. 35-42, 2024.
[13] R. A. Saputra, S. Suharyanto, S. Wasiyanti, D. F. Saefudin, A. Supriyatna and A. Wibowo, “Rice Leaf Disease Image Classifications Using KNN Based On GLCM Feature Extraction,” in International Conference on Advanced Information Scientific Development (ICAISD) , 2020.
[14] S. R. Cholil, T. Handayani, R. Prathivi and T. Ardianita, “Implementasi Algoritma Klasifikasi K-Nearest Neighbor (KNN) Untuk Klasifikasi Seleksi Penerima Beasiswa,” IJCIT (Indonesian Journal on Computer and Information Technolog, vol. 6, no. 2, pp. 118-127, 2021.
[15] Y. LeCun, Y. Bengio and G. Hinton, “Deep Learning,” Nature, vol. 521, p. 436–444, 2015.
[16] T. Handhayani and J. Hendryli, “Leboh: An Android Mobile Application for Waste Classification Using TensorFlow Lite,” in Intelligent Systems Conference (IntelliSys), Amsterdam, 2022.
[17] K. Azmi, S. Defit and S. Sumijan, “Implementasi Convolutional Neural Network (CNN) Untuk Klasifikasi Batik Tanah Liat Sumatera Barat,” Jurnal Unitek, vol. 16, no. 1, pp. 28-40, 2023.
[18] S. Sikandar, R. Mahum and A. Alsalman, “A Novel Hybrid Approach for a Content-Based Image Retrieval Using Feature Fusion,” Applied Sciences, vol. 13, no. 7, pp. 1-17, 2023.
[19] T. L. Malau, S. Sawaluddin, S. Sutarman and T. Joseph, “Analisis Metode Logistik Regresi Ensemble untuk Klasifikasi dengan Pra-Pemrosesan Menggunakan Principal Component Analysis,” IJM: Indonesian Journal of Multidisciplinary, vol. 1, no. 2, pp. 707-722, 2023.
[20] M. R. Alwanda, R. P. K. Ramadhan and D. Alamsyah, “Implementasi Metode Convolutional Neural Network Menggunakan Arsitektur LeNet-5 untuk Pengenalan Doodle,” Jurnal Algoritme, vol. 1, no. 1, p. 45–56, 2020.
[21] D. R. R. Putra and R. A. Saputra, “Implementasi Convolutional Neural Network (CNN) untuk Mendeteksi Penggunaan Masker pada Gambar,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 11, no. 3, 2023.
[22] K. R. Wardani and L. Leonardi, “Klasifikasi Penyakit pada Daun Anggur menggunakan Metode Convolutional Neural Network,” Jurnal Tekno Insentif, vol. 17, no. 2, pp. 112-126, 2023.
[23] B. P. Pratiwi, A. S. Handayani and S. Sarjana, “Pengukuran Kinerja Sistem Kualitas Udara Dengan Teknologi WSN Menggunakan Confusion Matrix,” urnal Informatika Upgris, vol. 6, no. 2, 2020.
[24] R. R. Adhitya, W. Witanti and R. Yuniarti, “Perbandingan Metode CART dan Naïve Bayes untuk Klasifikasi Customer Churn,” INFOTECH journal, vol. 9, no. 2, p. 307–318, 2023.
[25] B. V. Jayadi, M. D. Lauro, Z. Rusdi and T. Handhayani, “Klasifikasi Indeks Standar Pencemaran Udara untuk Data Tidak Seimbang menggunakan Pendekatan Pembelajaran Mesin,” Sistemasi: Jurnal Sistem Informasi, vol. 13, no. 3, pp. 951-958, 2024.